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ABSTRACT

Providing advance warning for impending severe convective weather events (i.e., tornadoes, hail, wind)

fundamentally requires an ability to predict and/or detect these hazards and subsequently communicate their

potential threat in real time. The National Weather Service (NWS) provides advance warning for severe

convective weather through the issuance of tornado and severe thunderstorm warnings, a system that has

remained relatively unchanged for approximately the past 65 years. Forecasting a Continuum of Environ-

mental Threats (FACETs) proposes a reinvention of this system, transitioning from a deterministic product-

centric paradigm to one based on probabilistic hazard information (PHI) for hazardous weather events. Four

years of iterative development and rapid prototyping in the National Oceanic and Atmospheric Adminis-

tration (NOAA)HazardousWeather Testbed (HWT)withNWS forecasters and partners has yielded insights

into this new paradigm by discovering efficient ways to generate, inform, and utilize a continuous flow of

information through the development of a human–machine mix. Forecasters conditionally used automated

object-based guidance within four levels of automation to issue deterministic products containing PHI.

Forecasters accomplished this task in a timely manner while focusing on communication and conveying

forecast confidence, elements considered necessary by emergency managers. Observed annual increases in

the usage of first-guess probabilistic guidance by forecasters were related to improvements made to the

prototyped software, guidance, and techniques. However, increasing usage of automation requires im-

provements in guidance, data integration, and data visualization to garner trust more effectively. Additional

opportunities exist to address limitations in procedures for motion derivation and geospatial mapping of

subjective probability.

1. Introduction

For several decades, the National Weather Service

(NWS) has invested in the development and mainte-

nance of various technologies that assist forecasters

tasked with making real-time warning decisions for se-

vere convective hazards. Perhaps the most prominent of

these technologies is the Weather Surveillance Radar

(WSR) network (e.g., Polger et al. 1994; Torres and

Curtis 2007; Istok et al. 2009; Daniel et al. 2014). The

current Weather Surveillance Radar 1988-Doppler

(WSR-88D) network offers many capabilities, in-

cluding Doppler and reflectivity products for detecting

individual hazards and for identifying stormmode, rapid

volumetric scanning strategies for improving detection,

and dual-polarization products for providing comple-

mentary evidence. In addition to real-time applications

such as warning decision-making, the aggregation of

cases identified from the WSR-88D network, combined

with contextual information (e.g., environment), can

lead to the development of or improvements to existing

conceptual models (e.g., Moller et al. 1994). However,

the application of conceptual models relies on human

interpretation for severe convective weather detection,

either through the use of patterns learned (i.e., heuristics
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or intuition) and/or by following a stepwise analytical

procedure that is often acquired from training.

The proliferation of computational technology in the

1990s enabled a real-time codification of analytical

procedures to work in conjunction with the WSR-88D

network (i.e., algorithms), with the goal of rapid de-

tection of radar signatures to assist in warning decision-

making. Development of single-site radar algorithms

ensued, such as the Hail Detection Algorithm (HDA;

Witt et al. 1998), the Mesocyclone Detection Algorithm

(MDA; Stumpf et al. 1998), and the Tornado Detection

Algorithm (TDA; Mitchell et al. 1998). These algorithm

development efforts quickly evolved to include multisensor-

enabled algorithms using four-dimensional radar data

(Lakshmanan et al. 2007) with the focus shifting to au-

tomated detection of severe weather phenomena. This

Multi-RadarMulti-Sensor (MRMS) system (Smith et al.

2016) has been combined with satellite and environ-

mental information to drive artificial intelligence appli-

cations (e.g., Cintineo et al. 2014; McGovern et al. 2017;

Gagne et al. 2017) and emerging convection-allowing

model ensemble systems (e.g., Stensrud et al. 2009;

Wheatley et al. 2015) that aim to predict the likelihood of

severe convective weather occurrence, all with the goal of

enhancing forecaster situational awareness and extending

warning lead time.

With the continued emergence of analytical and pre-

dictive techniques, how can all of the aforementioned

information be utilized by forecasters, particularly

within the time constraints associated with warning de-

cisions? The Forecasting a Continuum of Environmen-

tal Threats (FACETs; Rothfusz et al. 2014) project

proposes a reinvention of the current NWS watch/

warning system, transitioning from a deterministic

product-centric paradigm to one that utilizes the pre-

viously discussed forms of probabilistic guidance to

provide NWS forecasters and partners with probabilistic

hazard information (PHI; Karstens et al. 2015). Karstens

et al. (2015) found that automated PHI guidance has the

potential to produce more reliable probabilistic fore-

casts with less false-alarm area, but with reduced

verification metrics, compared to human-generated

forecasts. In addition, forecasters issued forecasts in a

reasonable and timely manner and could save more

time by using the automated guidance as a first guess.

Thus, a PHI approach to forecasting severe convec-

tive events likely requires a human–machine mix

(Snellman 1977; Moller et al. 1994; NRC 2014) in

which guidance is partially or completely used to

generate and/or maintain a forecast, to both assist

and augment forecasting of all potential hazard areas

regardless of severity (i.e., exceeding and falling be-

low warning thresholds).

In practice, however, algorithms and other automated

predictive techniques lack forecaster trust (Hoffman

et al. 2013), a perception derived from factors such as

erroneous detections (Andra et al. 2002), competitive

dynamics (Stuart et al. 2006), andmisuse or overreliance

(Klein 2000) in place of basic subjective analysis (e.g.,

radar interrogation and conceptual understanding;

Wilson et al. 2017). Within deterministic NWS warn-

ing operations, such techniques traditionally serve as

‘‘safety nets,’’ cuing the forecaster to reengage in

subjective analysis, when time permits (Andra et al.

2002). However, these perceptions and strategies

can limit the potential that automated technologies

offer (NRC 2014), particularly in rapidly changing

convective situations with high severity and/or coverage

that can reduce or eliminate opportunities formaintaining

subjective analysis (Bosart 1989; Brooks et al. 1992). Thus,

groundwork for adapting a human–machine mix ap-

proach to warning applications is needed.

The purpose of this paper is to build on the efforts of

Karstens et al. (2015) through the exploration of a

human–machine mix as applied to severe convective

events. This paper summarizes the iterative progress and

discoveries from four annual testing cycles, yielding

several insights into what a baseline probability-based

warning paradigm could look like. Section 2 provides

information about the chronological sequence and de-

sign of annual National Oceanic and Atmospheric Ad-

ministration (NOAA) Hazardous Weather Testbed

(HWT) testing cycles. Detailed qualitative explanations

and quantitative results of the human–machine mix

development are given in sections 3 and 4, respectively,

followed by a summary and discussion including future

work in section 5.

2. Testing cycles to facilitate a human–machine mix
system design

a. Practitioner’s cycles methodology

Expanding on the previous findings from Karstens

et al. (2015), this paper describes what is now four an-

nually occurring tests (sometimes elastically referred to

as ‘‘experiments’’), or practitioner’s cycles (Hoffman

et al. 2010), in the HWT that brought in one (2015), then

two (2016–17), key user groups. Practitioner’s cycles are

derived from empirical data on actual software devel-

opment failures. Accounting for the continuous and

highly interacting factors in complex macrocognitive

work, these practitioner’s cycles situate prototypes in

the workplace whenever possible. Because this work

pertains specifically to severe convective events, the

next best strategy of creating a naturalistic environment
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for an envisioned world problem in the laboratory (i.e.,

HWT) was used (Crandall et al. 2006; Kahneman and

Klein 2009). Realism in the testing environment is crit-

ical for these practitioner cycles to be capable of directly

addressing and mitigating many of the factors that cre-

ate the ‘‘valley of death’’ (NAS 2000), wherein a concept

is unable to transition from technology readiness level 3

(proof of concept) to readiness level 7 (sufficiently ma-

ture prototype to be tested in an operational environ-

ment; Deal and Hoffman 2010).

In 2014, it was immediately apparent that exploration

of the advantages and disadvantages of generating rap-

idly updating, hazard-specific PHI on storm hazards

required the presence of key user groups. The project

thus appropriately increased in complexity, leveraging

funds from several projects. However, the goals of these

annual testing cycles were mutual: to test ways in which

a variety of forms of automated guidance (Table 1)

could be used by NWS forecasters and to identify the

optimal modes of operation in conjunction with NWS

partners to generate useful, usable, and understandable

information. This work began in 2014 at practitioner

cycle three: users interacting with a functioning pro-

totype, revealing interface issues, usability issues, brit-

tleness, integration issues, and additional desirements

(Hoffman et al. 2010). The second year (2015) added

one key user group, emergency managers (EMs), and

the final two years (2016 and 2017) added broadcast

meteorologists in order to assist in identification of op-

timal modes of operation. Complexity was maximized in

2016, when actions and decisions from every participant

group were interjected into the other groups as they

would be in real life.

This strategy yields high external validity, which then

situates other aspects of this project in the initial, ‘‘ex-

ploration and discovery’’ phase of fundamental scientific

processes necessary for a methodical entry into a long-

term scientific endeavor (e.g., UCMP 2017). In other

words, this design has permitted and enabled the gen-

eration of many hypotheses, only a few of which are

suggested herein. Those hypotheses can be subsequently

studied in isolation for high internal validity re-

search efforts that focus on specific issues such as

how to best convey probability to an emergency man-

ager. However, a return to complex, high external val-

idity designs during system design completion is prudent

to assure this project successfully crosses the valley of

death to technology readiness level 7.

b. Participant activities and researcher tools

Each year consisted of a three-week testing cycle held

during the afternoon and evening hours in the peak of

the severe convective weather season. Shifts on days 1–4

were spent working one displaced real-time event

(meaning an archived event was timed to appear as

though the event were occurring in real time) and one

real-time event. Day 1 served mainly as a learning day,

ending with a brief period of independent use of the

tools. The selection of real-time events was sensitive to

the potential for severe convective activity on a given

day, whereas the displaced real-time case selection

considered a variety of research needs, including con-

vective modes, coverage, severity, and evolution for the

mutual benefit of independent subprojects (Fig. 1;

Table 1).

NWS forecaster participants issued forecasts for

tornadoes (2014–17), combined severe thunderstorm

hazards (wind and hail; 2015–17), and cloud-to-ground

lightning (2014, 2016, and 2017; Table 1). Forecasters

were provided with and able to use experimental prob-

abilistic guidance to assist in ascertaining forecast con-

fidence of hazard occurrence while evaluating the utility

of the guidance; they also analyzed standard operational

data feeds using the Advanced Weather Interactive

Processing System, version 2 (AWIPS II). As previously

mentioned, user participants representing the NWS

partner community, including EMs (LaDue et al. 2016,

2017) and broadcast meteorologists (Obermeier et al.

2017; Nemunaitis-Berry et al. 2017), were incorporated

into the testing cycles beginning in 2015 and 2016, re-

spectively. During each event, all participants were

encouraged to ‘‘think aloud’’ (Ericsson and Simon

1993) while researchers took notes and recorded their

verbalizations (via interview protocols). Additional

recordings (via screen capture videos, camcorders,

passive software logging) captured the actions of

NWS forecasters creating, issuing, and updating

manual and partially automated probabilistic fore-

casts (Bosart 1989) for PHI objects that spatially

denote the extent of a severe convective weather

event (i.e., hazard) and temporally denote the pro-

jected movement of a hazard area using a web-based

prototype (Karstens et al. 2015).

Forecasts of PHI generated by NWS forecasters were

converted from object-based probabilistic forecasts to

grid-based probabilistic forecasts (i.e., PHI swaths) and

displayed in an experimental version of the NWS En-

hanced Data Display (EDD; Wolfe 2014). EMs and

broadcast meteorologists used the experimental EDD

to make simulated real-time decisions (e.g., activate si-

rens, preposition personnel, initiate programming cut-

ins). Additionally, an internal NWS instant messaging

program for real-time communication with Integrated

Warning Team (IWT; e.g., Cavanaugh et al. 2016)

partners (NWSChat; NOAA/NWS 2016), was used as a

means to communicate information from EMs and
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broadcast meteorologists to/from NWS forecasters via a

warning coordinator. This simulated warning system

grounded our work in observations rather than specu-

lation on how such a system might work.

Immediately following each testing period, partici-

pants individually filled out a NASA Task Load

Index (NASA-TLX; Hart and Staveland 1988) survey

and a confidence continuum survey (adapted from

Heinselman et al. 2015), followed by a verbal debrief

or a recent case walkthrough (day 4 displaced real-time

case in 2017 only; Militello and Hutton 1998; Hoffman

2005). Thereafter, the participants convened to form an

IWT. Conducted as focus groups (Kamberelis and

Dimitriadis 2005), these were moderated by a re-

searcher and focused on a variety of themes, including

recollection of working the event(s), elements of the

forecast information (e.g., tools, probabilities, visuali-

zation, communication), methodological shortcomings,

and ideas for generating systematic performance im-

provements. At the end of each week (day 5), partici-

pants filled out an end-of-week survey and convened

for a final focus group activity to provide summary

feedback and desirements (the ‘‘end’’ of the practi-

tioner’s cycle) for the software, similar input to experi-

mental guidance, and expert direction on this potential

future warning paradigm. Using this framework allowed

the participants to have a role in contributing to and

shaping a potential future warning system, helping to

finish the system while under construction.

This study documents results from a subset of these

instruments. Specifically, all statistics are derived from

passive software logging of forecaster actions and one

end-of-week survey question for EMs (discussed in

section 4). The software statistics were reviewed annu-

ally in conjunction with the focus group discussion to

inform development strategies for the next practitioner

cycle (hereafter referred to as a testing cycle) the fol-

lowing year. In addition, evaluation of probabilistic

forecasts is restricted to tornadoes and severe thunder-

storms herein in an effort to draw from factors that were

consistent in the three most recent testing cycles (using

2014 as a reference) and to draw some comparison with

the severe convective warning paradigm currently em-

ployed by the NWS.

Inherent to these HWT testing cycles is the conundrum

of drawing conclusions from a small sample size of par-

ticipants. However, the aggregation of four annual testing

cycles yielded 30 NWS forecaster and 27 EM participants,

with hundreds of forecasts generated in each testing cycle.

This study used recruitment tactics to deliberately in-

troduce variation inherent of a larger sample size. Specif-

ically, varied expertise was sought across the NWS regions

and thus experience with hazards, policies, and de-

mographics (Harrison and Karstens 2017). This approach

brings the world into the laboratory, with all the real-world

concerns, constraints, and opportunities, and forced all of

us (researchers and participants) to deal with that com-

plexity while, together, evaluating this new potential

warning system. Note, three of the forecaster participants

in 2017 (one per week) also participated in a previous

testing cycle (one from 2014, two from 2016) to evaluate

our development efforts and provide veteran insight.

Emergency managers from a wide range of jurisdiction

sizes and emergency support functions similarly helped

broaden the representativeness of these results. That said,

the findings of this study may not be generalized to all

forecasters and emergency managers, but they are repre-

sentative of a fairly broad constituency.

3. Qualitative evolution of a human–machine mix

a. Object-based guidance

To facilitate a human–machine mix for warning ap-

plications within the prototype system developed by

Karstens et al. (2015), a consolidation of automated

guidance into an object-based framework must occur.

Key components of this process include object identifi-

cation (i.e., vectorizing) of atmospheric processes (i.e.,

severe convective storms) from continuous fields with

self-describing attributes (e.g., Lakshmanan et al. 2009),

object tracking through time (e.g., Lakshmanan and

Smith 2010; Lakshmanan et al. 2015), update frequency

sufficient to resolve hazard evolution (e.g., LaDue et al.

2010; Heinselman et al. 2012; Wilson et al. 2017), and

hazard prediction (e.g., Cintineo et al. 2014). Three

forms of automated object-based guidance were in-

corporated and tested with forecasters, with efforts be-

ginning in 2015 (Table 1).

FIG. 1. Map of CWAs in which forecasters operated during the

HWT PHI testing cycles (2014–17), denoted by real-time (RT; blue),

displaced real-time (DRT; green), andbothRTandDRT(red) events.
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Guidance for the creation of combined severe thun-

derstorm forecasts was based on the NOAA ProbSevere

model (Cintineo et al. 2014) via objects identified from

MRMS composite reflectivity with an update frequency of

approximately 2 min (Fig. 2). The ProbSevere model

combines data from Geostationary Operational Environ-

mental Satellites (GOES; Menzel and Purdom 1994), the

WSR-88D network, and the Rapid Refresh model (RAP;

Benjamin et al. 2006) to probabilistically forecast the se-

vere weather likelihood from a developing storm. The

ProbSevere model evolved to incorporate lightning pre-

dictors and offers probabilistic predictions for individual

severe thunderstorm hazards (hail, wind, and tornado;

Table 1; Cintineo et al. 2018). ProbSevere guidance was

also augmented with predictions of duration (McGovern

et al. 2017), storm classification (McGovern et al. 2018),

damaging straight-line winds (Lagerquist et al. 2017), and

probability trend prediction (Harrison et al. 2018) using

machine learning techniques. Additionally, a real-time

best-track algorithm (Harrison et al. 2017, manuscript

submitted to Wea. Forecasting, hereafter HKM) was im-

plemented in 2017 to reduce the number of unjustified

tracking breakage instances.

Guidance for the creation of tornado forecasts in 2015

(only) included objects identified from MRMS azi-

muthal shear, as discussed in Karstens et al. (2016).

Beginning in 2016, guidance was made available from

the National Severe Storms Laboratory (NSSL) Ex-

perimental Warn-on-Forecast System for Ensembles

(NEWS-e;Wheatley et al. 2015) for identifyingmid- and

low-level storm rotation (Correia et al. 2016, 2018;

McDonald and Correia 2016). Finally, guidance for

lightning hazards in 2016 and 2017 included the proba-

bility of cloud-to-ground lightning prediction (Meyer

et al. 2016; Calhoun et al. 2018) via objects identified

from the MRMS reflectivity at 2108C with an update

frequency of approximately 2min (not discussed).

b. Levels of automation

Forecaster usage of the automated guidance followed

a similar procedure as described in Karstens et al. (2015,

section 2c, steps 1b–4b), but with some modifications.

First, the display of the automated guidance changed

from point markers to objectively identified diagnostic

polygons (i.e., objects; Fig. 2a). Second, all first-guess

forecast attributes could be optionally overridden by a

forecaster, an effort that evolved throughout 2015–17

through iterative testing and evaluation (discussed in

sections 3c and 4; Fig. 2b). The set of overrideable first-

guess forecast attributes included the object geometry

(shape and position), motion vector (speed and direction),

motion uncertainty (speed and direction), probability trend,

and discussion text.

After undergoing testing and evaluation with fore-

casters in 2015, four preferential modes of operation

with the automated guidance were identified:

level 1, manual forecast;

level 2, forecaster geometry;

level 3, automated geometry; and

level 4, automated forecast.

For convenience, these modes are classified as four

levels of automation, following a simplified linear clas-

sification method developed by Sheridan and Verplank

(1978), ranging from completely manual (level 1; see

Karstens et al. (2015) section 2c, steps 1a–6a) to com-

pletely automated forecast generation (level 4). Levels 2

and 3 are representative of a human–machine mix

distinguished by forecaster override (level 2) or au-

tomated control (level 3) of the object geometry from

automation.

Levels 2 and 3 are hereafter referred to as the human–

machine levels of automation. In 2015, the delineation

between these two levels was determined by whether or

not a forecaster adjusted the object geometry on the

map. After observing a lack of intuition with the initial

functionality to make this delineation, a checkbox was

added in 2016 enabling binary, nonsequential control,

thus allowing the forecaster to toggle control of the

object geometry to (checked) or from (unchecked) au-

tomation (Fig. 2b; ‘‘Auto’’ checkbox on Object Shape/

Pos line). However, controls for adjusting the object

shape [see Karstens et al. (2015) , their Fig. 4] were still

present with the automated geometry enabled (level 3).

In 2017 these controls were disassociated from level 3 of

the automation process (Fig. 2b) after observing fore-

caster usage/goals in 2016, therefore limiting these

controls to levels 1 and 2 of automation.

c. Conditional usage of automation

Although initial testing with human–machine levels of

automation was encouraging, a few critical limitations

were identified. First, the automatically identified haz-

ard areas were at times too small or too numerous. For

example, too many instances of azimuthal shear objects

created too many first-guess tornado objects in 2015

(Table 1). Forecasters end up deleting these objects and

starting over, while recommending that tornado objects

remain manually generated (level 1). This recommen-

dation is supported by Bruick and Karstens (2017), who

show that most, approximately 93%–97%, simultaneous

peak tornado warning occurrences [i.e., maximum

number of tornado warnings in effect within an NWS

county warning area (CWA) at a given time] were as-

sociated with no more than four or five warnings (gen-

erated manually), respectively. Although it can be
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FIG. 2. Visualization of (a) analyzing and (b) editing first-guess ProbSevere objects (yellow/hatched polygons on

map) in the prototype PHI tool. Automated objects [hatched object in (a)] are labeled with their identification

number, prediction (P 5 persistence, E 5 explicit), level of automation (1–4), and probability prediction value.

Clicking on an object allows for analysis of historical trends in the predictors, object attributes, and previously

issued discussions [see (a)]. Additionally, LSRs are spatially/temporally matched with objects and provided in

a table [left side of (a)] and visualized as a breadcrumb trail of color circles on the map. Clicking theModify button

displays controls and tools for editing forecast attributes and object properties [see (b)]. Clicking the Issue button

gives forecasters partial or complete control of the object, with enhanced situational awareness attributes added to

the object label, including the forecaster name and time (min) since last update [see small object in (a)].
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implied that events requiring tornado warnings can be

maintained manually (i.e., four or five objects per fore-

caster; Karstens et al. 2015), NWSwarnings and PHI are

not directly comparable, particularly in consideration of

the FACETs concept of forecasting additional sub-

severe hazard areas (Rothfusz et al. 2014).

Second, automated object identification and tracking

is not a steady or entirely predictable process. Object

tracking methods rely on two-dimensional continuous

data for atmospheric processes that are three-dimensional

(excluding time), leading to inconsistent object identifi-

cation numbers while tracking objects. Thus, the identi-

fication and tracking of objects is sometimes justifiably

(e.g., merging/splitting/growing storms) and unjustifiably

(e.g., algorithm limitations) discontinuous. From an au-

tomation perspective, these tracking breakage instances

can result in a loss of continuous information to NWS

partners, requiring subsequent intervention. FromanEM

perspective, the loss of continuous information is detri-

mental, as storm history is important for maintaining

situational awareness and informing decisions (discussed

in section 4).

When presented with these situational impasses,

forecasters in 2015 were observed to preferentially as-

sume control of the object (from level 3 to levels 1 or 2)

as a way of eliminating the error, resurfacing workload

issues like those observed in 2014 (Karstens et al. 2015).

To address these limitations, week one of the 2016

testing cycle began with forecaster tools identical to

those from 2015 to clarify challenges associated with

automated object identification and tracking, particu-

larly when the tracking breaks. This breakage occurs

when the original object cannot be identified on the

successive data layer and will manifest as one of three

potential situations:

1) The original object disappears.

2) The original object is replaced with a new object or

set of objects.

3) The original object is merged with another pre-

viously identified object or set of objects.

To address these three tracking issues, a tactic was

developed to reintroduce any forecaster-modified ob-

ject that undergoes a tracking failure into the spatial

display while automatically masking any overlapping

object not being maintained by the forecaster. At this

juncture, the forecaster is presented with the opportu-

nity to decide how to proceed, depending on which of

the three tracking situations have been incurred. In sit-

uation 1, the forecaster can take no action or expire the

object. In situations 2 and 3, the forecaster can repair the

broken object tracking by transferring attributes from

FIG. 3. Illustration of a tactic developed to triage discontinuous automated object tracking, as viewed by (a)–(c) NWS forecaster

participants and by (d)–(f) NWS partner participants, at three time steps. In (a)–(c) the underlying color fills are composite reflectivity

imagery and low-level radar reflectivity mosaic imagery in (d)–(f).
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one object (original) to another [new object(s) that au-

tomatically replaced the original]. An example of the

situation 2 triaging sequence is provided in Fig. 3.

Adopting this new tactic quickly revealed new results

and challenges. In convective events, particularly those

with minimal spatial coverage, where tracking issues

happen infrequently, the tactic appears to work well.

Forecaster actions are constrained in a manner that is

aligned with their goals (repair the tracking situation

quickly, but with time to make an informed decision if

needed) and, therefore, are able to intuitively overcome

the three situational impasses quickly and decisively

without interrupting the flow of information to NWS

partners. However, some convective events appear to

trigger these tracking situations frequently and ran-

domly, leading to an additional workload to maintain a

coherent geospatial representation of the hazard areas.

For example, adjacent cellular storms that grow upscale

may undergo a sequence of oscillatingmergers and splits

before eventually merging. Although adjustments to the

object identification and tracking algorithm may

alleviate a portion of these issues, it is clear that tracking

discontinuities are a feature of convective hazard evo-

lution. A method for extracting postevent storm tracks

(Lakshmanan et al. 2015) was adapted for real-time

use (HKM) in the 2017 testing cycle, anecdotally

revealing a significant reduction in the number of un-

justified tracking breakage instances.

With continued testing and evaluation of the human–

machine levels of automation, it became quickly apparent

through observations of forecasters in 2016 that these

levels are not optimal for all convective modes and evo-

lutions. In other words, this process is not unidimensional

(Bradshaw et al. 2013). Forecasters needed tools to facili-

tate their goals, allowing them to transfer between all

levels of automation as seamlessly as possible and estab-

lish effective forecaster–computer interdependence (Andra

et al. 2002; Hoffman et al. 2017). Usage with automated

guidance appears to scale predominantly with hazard

severity, with subsevere hazards better left to automation

(level 4) and significant severe hazards under complete

manual control (level 1). Temporal evolution of hazard

severity appears to determine the instances when a

transfer (i.e., overriding or releasing control) is needed

from one level of automation to another. This transfer

process has been categorized into six conditional usages

of automation as follows:

1) complete override of automation;

2) override automated geometry, at least one other

attribute automated;

3) automated geometry, override at least one other

attribute;

4) release attributes to automation, maintain geometry;

5) release geometry to automation, maintain at least

one other attribute; and

6) release full control to automation.

Usage with the levels of automation that resulted from

this transfer process is described in section 4.

d. Deterministic product generation and usage

Efforts for generating forecast information for user

interpretation in the 2015 testing cycle included no de-

terministic products; only PHI could be used by EMs to

make simulated decisions. However, EMs in that testing

cycle explained that deterministic warning decisions

made by NWS forecasters are codified in standard op-

erating plans, and EMs attempted to deduce de-

terminism from PHI on their own for individual events.

Consequently, an obvious need emerged in 2015 to

reintroduce deterministic products in subsequent testing

cycles. However, Karstens et al. (2015) summarize

technological limitations with current storm-based

warnings, issued as static, county-clipped polygons

with no ability to add area, resulting in a series of several

polygons issued for highly dynamic hazards. A re-

engineering of the system presents an opportunity to

address these limitations.

In 2016 forecasters were given the ability to determine

which objects to assign a warning (analogous to the

current warning system) or a subsevere deterministic

product labeled an advisory [analogous to special

weather statements (SPS)]. All ProbSevere objects from

automation were assigned advisories by default to

maintain the expert human judgment expected of severe

weather warnings while facilitating product generation

across a full spectrum of automated PHI, with forecaster

ability to upgrade to a warning or keep as an advisory

(Brooks et al. 1992). Additionally, forecasters were

tasked with assigning a probability threshold for de-

fining the warning polygon boundary, similar to that

proposed by Rothfusz et al. (2014), and a nonnumeric

label of forecast confidence at issuance (low, medium

low, medium, medium high, high).

Figure 4a shows rather diffuse distributions of as-

signed thresholds for tornado and severe thunderstorm

hazards, with the daily progression of the median on

days 2–4 (day 1 was mostly learning) toward lower

threshold values (Fig. 4b). This result could suggest the

application of thresholds among forecasters and/or

among convective situations was inconsistent. Usage of

nonzero thresholds for defining deterministic product

polygon boundaries necessarily causes a reduction in

area, adding geospatial precision already inherent to the

object-based method for hazard identification that may
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be inconsistent with forecaster judgment. This added

precision was observed to adversely affect hazard de-

tection, particularly if the product was not updated fre-

quently. This problem is exemplified in Fig. 4c for two

probability thresholds. Assignment of a high threshold

of 80% results in a polygon area that is sensitive to

1) the forecast probability trend exceeding 80% (pink

area on graph),

2) when in the forecast this exceedance occurs

(25–50min), and

3) the method of interpolating the forecast probability

trend geospatially (two-dimensional Gaussian).

The result of this sequence of decisions is a small

downstream warning polygon (denoted by the black

polygon encompassing the 80% area on the map) going

into effect several minutes from issuance, an artifact that

is inconsistent with traditional warning decision-making

(at issuance). Choosing a lower threshold of 40%

introduces similar complex technical considerations, but

with less area reduction of the resulting polygon not too

dissimilar from the lowest nonzero probability threshold

(;0%) of the probabilistic swath. In addition, IWT

discussions frequently mentioned differing sensitivities,

depending on the archetype of severe weather (marginal

vs outbreak cases), to the magnitude of probability re-

quired to issue a warning. For example, lower proba-

bility thresholds to warn might be warranted on

outbreak days.

Consideration of these results led to adjustments in

the methodology for deriving deterministic products

prior to the 2017 testing cycle. The task of assigning a

probability threshold by forecasters was removed, and

by default all deterministic products were derived using

the outer boundary (;0% contour) of the probabilis-

tic swath. This refined definition of determinism

reframes the inner probabilistic swath as a relative geo-

spatial representation of forecast confidence (subjective

FIG. 4. Distributions [violin plots; http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.violinplot) with

box-and-whisker diagrams, diamonds (if shown) are outliers beyond the whisker lengths of Q12 (1.53 IQR) and

Q3 2 (1.5 3 IQR), where Q1 indicates the first quantile, Q3 indicates the third quantile, and IQR stands for

interquartile range] of probability thresholds assigned by forecasters in 2016 for deriving warning polygons from

PHI swaths by (a) hazard type and (b) day of testbed testing. Counts are labeled above each distribution.

(c) Example of using two probability thresholds (40% and 80%; black polygons) for deriving deterministic warning

polygons geospatially using a probabilistic swath and temporally using a forecast probability trend.
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probability; Kahneman and Tversky 1972; Brooks

et al. 1992; discussed further in section 4) consistent

with a user inference of uncertainty within de-

terministic forecasts (e.g., Morss et al. 2008; Ash et al.

2014; Lindell et al. 2016; Schumann et al. 2017). HKM

performed conditional verification with ProbSevere

swath polygons [those containing or nearest to a local

storm report (LSR)] to test this revised methodology

compared to NWS warnings issued during the same

period. In this complementary study, detections of

LSRs with increasing lead time for both ProbSevere

swaths and NWS warnings show similar hit rates as a

function of forecast lead time, signaling that similar

performance may be obtained if forecasters assign

warnings to objects associated with storms ordinarily

assigned a storm-based warning.

FIG. 5. Percentage of warning issuances vs advisory issuances by (top) hazard type and (middle) forecaster

[sorted by percentage and colored by above (cyan) or below (blue) all forecasters average] from (a),(c) 2016 and

(b),(d) 2017. Box plots of diagnostic probabilities assigned to warnings and advisories from (e) 2016 and (f) 2017.

Numbers above each bin in (a)–(d) give the number of warning issuances compared to the total number of issu-

ances. Counts are provided above/below the box plots in (e) and (f).
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Using these adjustments in 2017 yielded long lead

times for deterministic products, which consequently

gave EMs who use such products as triggers more time

to consider and reconcile warnings containing PHI (as

opposed to warnings alone) for augmenting decision-

making within the context of expert-forecaster dis-

cussion. Among forecasters, the switch to relative

probability may have contributed to a reduction in

forecast generation times (discussed in section 4).

Approximately two out of three deterministic prod-

ucts issued were warnings during both 2016 and 2017

(Figs. 5a,b), indicating a preference for information

dissemination driven by forecast confidence in ex-

ceeding severe threshold(s), although variation among

individual forecasters can be noted (50%–95%;

Figs. 5c,d). Likewise, the distributions of diagnostic

probabilities associated with warning (relatively high

values) and advisory (relatively low values) products

FIG. 6. Time duration distributions for (top),(middle) creating and (bottom) updating PHI objects from the

(a) 2014, (b) 2015, (c),(e) 2016, and (d),(f) 2017 testing cycles by day of testing. Counts are labeled above each

distribution.
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supports a severity preference, using probability to convey

the likelihood of hazard occurrence (Figs. 5e,f).Analysis of

these results in 2016 informed refinement of the proba-

bility trend definition (based on hazard occurrence) prior

to the 2017 testing cycle, and the congruence in results

between 2016 and 2017 supports this change. In the ab-

sence of any explicit training, forecaster preference to

stratify probabilities by product type reduces, but does not

completely avoid, alternative contradictory interpretations

(e.g., high-confidence advisory, low-confidence warning);

however, the geospatial representation of high-confidence

probability trends may unintentionally introduce such in-

terpretations if geospatial relativity is not considered (i.e.,

low probabilities along the edges of the swath; e.g., Fig. 4c).

4. Quantitative evolution of a human–machine mix

From the 2014 testing cycle it was learned that fore-

casters could create, issue, and update PHI forecasts

within a reasonable amount of time, ranging from 30 s to

2min (Karstens et al. 2015; Fig. 6a). These forecast

creation times decreased in magnitude throughout the

week of testing, indicative of forecasters working to

rapidly develop intuition with the new tools. However,

the creation time distributions from the three testing

cycles since 2014 show no daily decrease (Figs. 6b,c,d).

The addition of NWS partners in these three testing

cycles led to a shift from primarily focusing on learning

the tool (Fig. 7a) to adding more information in the

forecast discussion throughout the week of testing

(Figs. 7b–d). This occurred despite increasing the num-

ber of tasks to complete PHI issuance (Fig. 2b). The

downward shift of the word count distributions in 2017

(Fig. 7d) compared to 2015 and 2016 (Figs. 7b,c) is likely

attributable to a change in the EDD software display.

While updating a forecast, the forecasters in 2015 and

2016 were observed to append and time stamp their

forecast discussions in the discussion text box (Fig. 2b),

creating a running discussion history, based on in-

teractions in the IWTs. To simplify this task, each

forecast discussion was automatically made visible and

sequentially ordered in the EDD (Fig. 8), compared to

earlier visualizations that listed only the most recent

forecast discussion. Forecasters also found their own

discussions useful when returning to a storm (Fig. 2a),

particularly while managing a heavy workload.

FIG. 7. Forecast discussion word count distributions from the (a) 2014, (b) 2015, (c) 2016, and (d) 2017 testing cycles

by day of testing.
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Daily median update times are smaller in magnitude

compared to the creation time distributions (Figs. 6e,f).

This reduction in update timing is likely attributable to a

reduction in changes needed to the forecast objects and/

or attributes (populated from previous issuance) com-

pared to initial creation. This time reduction is also

FIG. 8. Screen capture of PHI displayed in the experimental NWSEDDused byEMand broadcastmeteorologist

participants in 2017. Hovering over a PHI object displays the downstreamPHI swath (colors) and a popup box with

forecast information, including a sequential listing of forecast discussions associated with the object. The object

depicted is a ProbSevere object that underwent a deterministic progression from an advisory to a warning for severe

hail, under level 3 of automation.
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apparent when analyzed by hazard type (Figs. 9a,b),

with faster generation times for severe hazards than

tornadoes. This hazard type disparity is likely attribut-

able to the purely level 1 manual usage associated with

tornado objects, compared to the levels 1–3 human–

machine options associated with severe objects in 2016

and 2017. Differences in the creation and update timing

distributions are also evident when analyzed by forecasters

(Figs. 9c–f). Interestingly, there is also an apparent

relationship between faster creation/updates resulting

in a greater number of forecasts produced. However,

temporal integration of the creation/update time distri-

butions (small labels in Figs. 9c–f) suggests that fore-

casters spent their time in a variety of ways, with some

focusing more of their available time on creating forecast

information (large values) and others focusing more of

their available time on maintaining subjective analysis by

analyzing radar observations and guidance (small values).

FIG. 9. Time duration distributions for (a)–(d) creating [denoted as C in (a) and (b)] and (a),(b),(e),(f) updating

[denoted as U in (a) and (b)] PHI objects from (left) 2016 and (right) 2017 by hazard type in (a) and (b) and by

forecaster in (c)–(f). Counts are labeled at the top of each distribution (large font). In (c)–(f), we include labels of

total forecast generation minutes (number of forecasts3 time to generate each forecast; small font) and individual

forecaster distributions are sorted by median values.
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This variability in strategy among forecasters was ob-

served and sometimes vocalized. A commonly observed

strategy among fast generators was to focus primarily on

the geospatial aspect of the forecast in the initial creation,

issue the forecast, and then immediately update the dis-

cussion and other pertinent communication elements.

Development and usage of such strategies implies that

the software was agile enough to meet forecaster de-

sirements (Deal and Hoffman 2010). The flexibility to

decide workflow prioritization allowed a few forecasters

to innovate a way to become faster generators of PHI

content (2016’s forecasterH, 2017’s forecastersD andH),

thus meeting partner needs more quickly.

Notably, the distributions from 2016 shown in Figs. 6

and 9 are systematically higher in magnitude, by ap-

proximately 1min, compared to other testing cycles.

One factor that may contribute to this annual variability

is the presentation and usage of first-guess forecast

guidance. Figure 10a shows low conditional usage of

automation in 2015, with approximately 60% of all

forecasts generated manually, and a split between levels

2 and 3 of automation in the remaining 40%. Automa-

tion was used more with severe hazards, and quite little

with tornado hazards. Figure 10b shows almost an in-

verse in usage in 2016, with over 80% of all forecasts

generated in level 3 of automation and a split among

levels 1 and 2 within the remaining 20%. As mentioned

previously, both of these years included tools that were

insufficient to allow forecasters to transfer among the

various levels of automation.With such tools in place for

2017, Fig. 10c shows a slightly more balanced condi-

tional usage of automation, though still favoring level 3

of automation. It is also noteworthy to compare the

annual usage among individual forecasters and as a

collective. Although some variability in the usage of the

three levels of automation is evident among forecasters

in a given year, variability among forecasters as a col-

lective is more evident on an annual basis, as observed

and as is apparent in Figs. 10a–c. This annual variability

is attributable to changes, modifications, and the avail-

ability of tools to complete forecast generation tasks, as

the fundamentals of the underlying ProbSevere guid-

ance changed little from year to year (Table 1).

Comparing changes in the conditional usage distri-

butions between 2016 and 2017 (Figs. 11a and 11b), the

level 1 and 2 distributions appear quite similar, and the

level 3 generation times decreased in 2017. From this

comparison, it could be surmised that the aforemen-

tioned systematic increase in forecast generation times

in 2016 was attributable to difficulties in generating

forecasts using level 3 of automation. As discussed

in section 3b, initially forecasters were observed to

make adjustments to automated geometries, and upon

issuance such changes were not saved. This predicament

was partially addressed with training in 2016 and com-

pletely addressed with the disassociation of object ed-

iting controls from level 3 of automation in 2017

(requiring little training). Thus, part of the increase in

forecast generation times in 2016 may be explained by

this system design limitation, supported by a lack of level

2 conditional usage of automation in 2016 (Fig. 10b).

Additionally, the reduction in generation timeswith level 3

FIG. 10. Normalized conditional usage of levels 1–3 of automa-

tion for all automatable forecasts, automatable by forecaster, and

automatable by hazard type from (a) 2015, (b) 2016, and

(c) 2017. The total number of forecasts is labeled at the top of

each bin. Individual forecaster bins are sorted by level 3 of

automation usage.
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of automation in 2017 could signify the development of

tools that better facilitate forecaster goals. However, it is

important to consider the sample sizes of the distributions

(and as shown in Figs. 10b,d), which indicate that most

forecasts were generated using level 3 of automation in

both years.

Within the human–machine levels of automation, the

most frequent overrides to the individual first-guess

forecast guidance elements were made to the discus-

sion and probability trend elements (.80%; Figs. 12a,b),

indicative of a preference to focus on communication

and expressing forecast confidence. Coincidentally, the

discussion element was overridden most frequently,

followed by the probability prediction element in 2017,

which was a reversal from 2016. Figures 12c and 12d

show usage of the first-guess probabilistic predictions

among all forecasters increased rather significantly be-

tween 2016 and 2017, from approximately 5% to 30%

usage, which is likely attributable to the addition of

explicit probabilistic trend predictions, as opposed to

using a default linear decay (Doswell 2004) of the

ProbSevere probability prediction in the years prior.

The relatively fewer overrides made to the object

(10%–20%), speed (40%–50%), and direction (40%–50%)

elements may be an implicit indication of the object

identification and tracking quality relative to the

hazard coverage and anticipated movement. Tools for

systematically adjusting the automated object shape

(via buffering) and position (via repositioning)were added

in 2017 (Fig. 2b) to lower combatable object maintenance

issues associated with level 2 usage of automation. Yet,

there is a relative increase in overriding the object in 2017

from approximately 10% to 20%, indicating that tools for

conditionally using automation were likely preferred over

systematic object adjustments (Fig. 10c).

Considering the preceding analysis, the observed in-

crease in forecast generation times in 2016 relative to

other testing cycles is hypothesized to be attributable to

three factors. These factors include the deficient tools

delineating levels 2 and 3 of automation (addressed in

2017 as discussed above), assigning a probability

threshold defining a deterministic product boundary

(eliminated in 2017, as discussed in section 3c), and

assigning a nonnumeric label of forecast confidence at

issuance. Forecasters quickly realized, through in-

teraction with EMs, that their labels of forecast confi-

dence (diagnostic) needed to be consistent with their

forecast probability trend (Fig. 4c), but had difficulty

accomplishing this task due to a temporal incongruence

of these tools. In 2017, these two tools were combined,

with a ‘‘forecast confidence’’ label (presented in numeric

form) attached to the probability trend tool (Fig. 2b),

defining it as a subjective probability of hazard oc-

currence (using traditional thresholds defining severe

cases) within the object over an assigned duration. Us-

age of subjective probability is perhaps quite natural for

forecasters, who regularly combine numerous sources of

past, present, and future information while immersed in

the weather analysis and forecasting process (Bosart

2003; Doswell 2004). Labels of forecast confidence

provided to NWS partners were derived from this trend,

including both numeric and nonnumeric labels, in ad-

dition to conveyance via a forecast discussion (Fig. 8).

5. Importance of forecast elements to EM decision-
making

In the end-of-week survey used in the 2017 testing

cycle, EMs were asked to rank the importance [on a

scale from 1 (not important) to 10 (extremely impor-

tant)] of forecast elements for informing potential

FIG. 11. Time duration distributions for creating and updating PHI

objects by level of automation from (a) 2016 and (b) 2017.
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decision-making. Figures 13a and 13b show that for both

severe thunderstorm and tornado hazards, EMs unani-

mously ranked the discussion element with the highest

level of importance (10 out of 10), both informing and

substantiating the effort forecasters made to communicate

pertinent forecast information (Fig. 12b). This finding

signifies a fundamental and irreplaceable role forecasters

have in a human–machine mix for severe convective

events. Geospatially filtering the sequence of discussions,

or log of information (Fig. 8), as opposed to a unidimen-

sional log (e.g., NWSChat), was found to be of significant

benefit to facilitating rapid and (often) proactive decision-

making, even well before a warning was issued.

The forecast element ranked second highest by EMs was

time of arrival, and for someEMs it superseded thewarning

for initiating actions. Weather-savvy EM participants had

well-developed plans of action and an estimation of the

amount of time it takes to execute these plans. Time of

arrival information, in addition to traditional warning and

probabilistic information, meets important needs of this

subset of NWS partners. However, providing accurate and

reliable timing information requires frequent updates to the

hazard location, area, andmovement. Timing is determined

by a space-to-time conversion of the object crossing a user-

specified location using the object motion vector. Thus,

forecasters have little direct control over timing calculations

other than by making frequent updates to the object and

motion vector elements. This lends additional support for

the human–machine levels of automation. In particular,

level 3 of automation rapidly maintains object geometry

at a frequency sufficient to resolve hazard evolution. Ob-

servations of forecasters working high-impact tornado and

severe thunderstorm events revealed that forecasters pri-

oritize situations requiring a near-continuous flow of in-

formation, attempting to maintain geospatially precise

objects. Forecasters who leverage level 3 of automation

appeared to maximize productivity, repurposing time

otherwise spent in maintenance activities in a variety of

ways such as creating additional forecast information or

maintaining subjective analysis by further assessing radar

observations and guidance.

Interestingly, probability was ranked with lesser im-

portance for informing decision-making among EMs

relative to the discussion and timing elements of the

forecast, as well as other elements. In addition to ob-

scurity, the definition of probability can present obsta-

cles to understanding, including uncertainties in the

magnitude and number of events being forecast, and the

spatial and temporal scales over which the probability is

valid (Perry et al. 2016). Joslyn et al. (2009) demonstrate

that participants can make better decisions with proba-

bilistic information when the information is framed

properly. It appears that framing probability as forecast

confidence of hazard occurrence, using traditional severe

thresholds, effectively aligned with forecaster and user

expectations for representing the concept of probability as

applied to severe convective hazards. This is evident by the

relative ranking of forecast confidence (third) compared

FIG. 12. Percentage of overrides made by forecasters to individual, automated, first-guess forecast elements from

ProbSevere objects in (a) 2016 and (b) 2017, sorted in descending order. Also shown is the percent usage of the first-

guess diagnostic probability from ProbSevere objects by forecasters in (c) 2016 and (d) 2017, visualized as in Fig. 5.
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to probability (fifth and sixth), and by the aforementioned

hypothesis concluding section 4 to explain why forecast

generation times decreased from 2016 to 2017.

6. Summary and discussion

This paper presents the development of a human–

machine mix for severe convective events utilizing PHI,

building on 2014 HWT testing and evaluation discussed in

Karstens et al. (2015), and summarizing subsequent HWT

development and testing efforts with NWS forecasters and

EMs occurring annually through 2017. The primary

themes of the human–machine mix are anchored in the

evolutionary usage of automated object-based guidance

for augmenting forecaster workflows, generating and

communicating a flow of information sufficient to resolve

hazard evolution, and expressing forecaster confidence in

the likelihood of hazard occurrence. By integrating various

algorithms into a web-based prototype that served as a

new warning system, forecasters could efficiently take

advantage of guidance for the construction of PHI and

warnings to meet partner needs.

It was learned that a human–machine mix for severe

convective events comprises four levels of automation,

with level 1 representing manual forecast generation, level

4 representing automated forecast generation, and the

human–machine levels distinguished by forecaster and

automated control of object geometry in levels 2 and 3,

respectively. Forecasters require an ability to apply these

levels selectively to individual convective situations, based

on hazard severity, and an ability to easily transfer from

one level of automation to another, based on temporal

evolution of hazard severity, to forecast and adapt to

hazard evolution until hazard demise. However, auto-

mated identification and tracking of severe convective

processes is justifiably discontinuous, as a result of natural

processes such as merging and splitting convection. By

implementing a real-time best-track algorithm, a reduction

in the number of unjustified tracking breakage instances

occurred, but objects still incurring a tracking breakage

instance were reintroduced into the spatial display while

automatically blocking any newly identified object(s)

introduced by automation. This tactic gave forecasters

decision-making power and time for repairing tracking

breakage instances, consistent with recommendations from

NRC (2014). Distributions of the forecast creation and

update times by day of testing, hazard type, and forecaster

exhibit reasonable timing with stability achieved in 2017.

The presence of EMs provided forecasters an audience

for their communication, as well as feedback for what

particular information about storms was helpful for

decision-making. EMs explained that deterministic warning

decisionsmade byNWS forecasters are codified in standard

operating plans. Deterministic product generation from

PHIwas initially reintroduced in 2016 as a by-product of the

PHI swaths according to forecaster-assigned probabilistic

thresholds. It was hypothesized that this task contributed

to a systematic increase in forecast generation times, along

with a limitation in tools for conditionally using automated

guidance, and adversely affected hazard detection. Adjust-

ments were made in 2017 such that default deterministic

product generation encompassed the entire PHI swath,

supported by a three-month conditional verification study

(HKM). This change reframed the geospatial representa-

tion of PHI as relative subjective probabilities contained

within deterministic products, giving EMs longer lead times

to consider PHI for augmenting decision-making and with

refined geospatial precision compared to current storm-

based warnings. However, the process of creating de-

terministic products from PHI plumes remains unclear.

Adjustments to this methodology are still needed, along

with an ensuing systematic evaluation of forecaster-

generated deterministic products.

FIG. 13. Distributions of decision element importance ranked

independently by six EMs in 2017 for informing simulated

decisions for (a) tornado and (b) severe thunderstorm hazards.

Averages are labeled below each distribution.
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Although efforts to improve the presentation and re-

liability of probabilistic predictions within the automated

object-based guidance appeared to result in greater accep-

tance and usage by forecasters, it is clear that additional

efforts are needed to improve forecaster trust with these

predictions. Our imperfect understanding of atmospheric

processes leads to imperfect deterministic predictions,

making probability a convenient tool to represent forecast

uncertainty (Doswell 2004). However, objective probabili-

ties are typically derived from a collection of events (i.e., a

training set) that are often ambiguous and/or obscure to

forecasters. Rather, guidance is typically introduced

through training, and intuition is developed by repeated

real-time and postevent assessment of predictions for sin-

gular events. Capabilities are needed for actively visualizing

the underlying reasoning and training set information in-

herent to automated techniques to reveal to the forecaster

how the technique arrives at its answer (Hoffman et al.

2017). It is hypothesized that such efforts will improve usage

and trust of the techniques and better facilitate instances

when forecasters can strategically add forecast value. This

strategic intervention can be aided by continued efforts to

conduct verification while identifying strengths and weak-

nesses of the guidance through climatological assessments

of performance.

In addition, continued development and systematic

evaluations of object motion derivation and geospatial

representation of forecast confidence are needed. Linear

extrapolation was used for motion vector calculations

despite underlying tool support for depicting dynamic

hazard evolution. Opportunities exist to provide explicit

guidance on nonlinear hazard evolution, such as that

from a warn-on-forecast (WOF) system (Stensrud et al.

2009). To date, a distance-weighted two-dimensional

Gaussian method has been used for mapping forecasters’

probabilistic trends of forecast confidence geospatially. It

is hypothesized that employing the concept of nested

objects, representing objectively identified hazard-

specific areas [e.g., MRMS maximum estimated size of

hail (MESH)] with a tophat distribution, within objects

representing storm-scale reflectivity structures and con-

vective modes (e.g., ProbSevere) with a two-dimensional

Gaussian distribution, could yield significant im-

provements to the relative representation and in-

terpretation of subjective probability, particularly

for hazards commonly displaced from the geometric

center of storm-scale reflectivity structures. A com-

parison of these methods to MESH observations is

provided in Fig. 14, applying the watershed segmentation

algorithm to identify MESH objects at a 0.75-in.

threshold. The difference grid in Fig. 14c highlights

geospatial refinements from the nested object method,

albeit for one case, with an increase in probabilities

along the southern flank of the storm and a decrease in

probabilities in peripheral areas. Implementation of

such refined methods would enable readdressing the

reliability of geospatial probabilistic forecasts for

hazard-specific severe convective events.

FIG. 14. Accumulated PHI forecasts derived from (a) distanceweighting and (b) nested objectsmethods for two-dimensionallymapping

object-based probabilistic forecasts, and (c) difference grid [(b)2 (a)], issued 2320 UTC 25May–0020UTC 26May 2016 from automated

ProbSevere objects. (d) MRMS MESH observations valid 2320 UTC 25 May–0020 UTC 26 May 2016. All panels include accumulated

0.75-in. MESH contours valid 2320 UTC 25 May–0020 UTC 26 May 2016 (black contours) and 0020–0120 UTC 26 May 2016 (gray

contours).
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Finally, at this juncture of insights generated with the

use of the PHI-based human–machine mix warning

system described herein, both forecaster and user

decision-making could benefit from ensuing hypothesis

testing. We offer the following list of topics to poten-

tially motivate future research endeavors:

d decision-making with probabilistic information while

simulating rapid changes in probability forecasts un-

der time pressures,
d conflation of probability with alternative interpreta-

tions (e.g., intensity),
d comprehension of relative probability compared to

other geospatial representations, and
d importance of forecast elements and their temporal

sequencing relative to user decision-making timelines.
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